SMW-AUTOBLOK worldwide leader in Steady Rests

Fixed or travelling application

- 1. Tandem Steady Rest fixed
- **2.** Steady Rest fixed for end machining
- 3. Steady Rest travelling

Features included in standard range

Standa	ard Line	Premium Line							
SLU-X, SLUA-X	SLU-B, SLUA-B	SR	SRA	K, KA	KLU				
1 - 5.1	3 - 6	1 - 6	2 - 6	3 - 7.1	215 - 540				
	SLU-X, SLUA-X 1 - 5.1	SLUA-X SLUA-B 1 - 5.1	SLU-X, SLU-B, SR SLUA-X SLUA-B 1 - 5.1	SLU-X, SLU-B, SLUA-B SR SRA 1 - 5.1 3 - 6 1 - 6 2 - 6 1 - 5.1 3 - 6 1 - 6 2 - 6 1 - 6 1 - 6 2 - 6 1 - 6 <	SLU-X, SLU-B, SLUA-B SR SRA K, KA 1 - 5.1 3 - 6 1 - 6 2 - 6 3 - 7.1 1 - 5.1 3 - 6 1 - 6 2 - 6 3 - 7.1 1 - 5.1 1 - 6 1 - 6 1 - 6 1 - 6 1 - 6 1 - 6 1 - 7.1 1 - 6 1 - 7.1				

SLUA-X/SRA additional pivoting upper arm for automatic vertical loading (worldwide patented)

SLU-X® SLUA®-B SRA **SLU-B**

KLU

Equipment

Option of manual lubrication (M)

- Low cost solution for medium working conditions and low build up of swarf.
- The lubrication points and rollers are supplied with lubrication grease via the grease nipples and the grease gun.
- Lubrication intervals depending on the working conditions normally every 4 to 8 operating hours.
- Grease: KPE 2R-20 DIN 51502

Option of central oil lubrication (Z)

- For heavy working conditions and high build up of swarf
- For travelling Steady Rest applications.
- The use of our separate complete lubrication unit with timer control is recommended.
- Lubricating intervals 5 20 min
- Min./max. operating pressure 10 to 45 bar.
- Oil: Viscosity of 46 mm²/s (viscosity class ISO)

Option of central lubrication oil + air (OLD)

- For heaviest cutting conditions with high built up of swarf, dust or coolant.
- The SMW-AUTOBLOK oil + air unit for lubrication with built-in timer control is mandatory.
- This unit injects oil for lubrication into the air hose in adjustable intervals (2 -12 min.).
- The permanent air flow (min. 3 bar) feeds the oil to the rollers and keeps them clean.
- Oil: Viscosity of 46 mm²/s (viscosity class ISO)

Option of central grease lubrication (F)

- For machines with central grease lubrication
- For application and intervals please follow the instruction of the machine maker.
- Min./max. operating pressure 30 to 45 bar.
- Grease: NLGI class 0 or 1

Option of rollers

- SMW-AUTOBLOK rollers (precision class P05) specially developed for our Steady Rests.
- Special sealing ensures highest precision and service life.
- Standard equipment: 1 set of cylindrical rollers.
- Option: Spherical rollers (for travelling Steady Rests), synthetic material rollers, carbide rollers.

Rollers (all types)

• Rollers steel (standard): Surface of workpiece not hardened

Available optional materials:

- Rollers synthetic material: Surface of workpiece polished or chrome plated
- Rollers carbide: Surface of workpiece hardened

narrow

Option fine adjustment of center line

- Eccentric roller pins on the two Steady Rest arms allow a quick fine adjustment of the center line.
- This avoids to unlock and adjust the entire Steady Rest on the bracket for small adjusting movements.
- Adjustment of open steady rest only!

Coolant/air feed (SR/K/KLU only)

- Built-in channels to feed coolant or air from a central connecting port to the Steady Rest arms.
- Basic equipment for SR/K/KLU steady rests
- From size SR-4 / K4 and larger with coolant through the center arm

Patented coolant/air chipguard with integrated flush nozzles (SR/K/KLU only)

- Keeps roller clamping area free from chips
- The patented double flush nozzles keep front and rear of the wiper area clean.

Only for steady rests with coolant / air feed. Benefit:

- Constant centering accuracy
- No damage of workpiece and rollers caused by chips/swarf
- Less roller consumption = less costs

Option linear diameter measuring system SCU-A/SCU-V

- The position of the clamping arms is monitored by the linear measuring system SCU-A/SCU-V.
- Avoids collision with workpieces, turret, loader etc.
- Reduced cycle time due to position controlled opening of the arms to the requested opening only.

SCU-A: In: 24 V Out: 4 - 20 mA In: 24 V SCU-V: Out: 0 - 10 V

Steady Rest bracket with adjustment device

Steady Rest bracket

- A perfect bracket is very important for the function/precision of the Steady Rest.
- Fast and easy adjustment can be done with the SMW-AUTOBLOK adjustment device integrated into the bracket.
- SMW-AUTOBLOK supplies the correct bracket for all applications as a turnkey solution.

Self-centering Steady Rests Premium Line

Additional pivoting upper arm for vertical loading

- Sealed body
- Integrated coolant flush
- Chip guard with coolant nozzles
 Stroke control unit or proximity switch for end position open

SMW-AUTOBLOK Type Size		SR A 2	SR A 3	SR A 3.1	SRA 4	SRA 5	SRA 6
Centering range with coolant chip guard	U1	20 (8*)	28 (12*)	25 (22*)	30	45	175
	U2	80	130	150	220	268	460
Vertical loading with coolant chip guard	Z	35	58	68	103	121	215**
Max. axial clearing diameter	U3	99	162	168	253	295	466
	А	277	428	436	603	697	953.5
	В	195	312	320	448	510	715
	C	70	115	123	146	178	215
	D	85	135	135	240	270	330
	Е	170	262	262	365	400	680
	F	195	295	295	405	440	610/640
	G	75	105	105	125	150	175
	K	35	45	45	60	75	85
Width of rollers	L	19	25	25	25	29	32
Diameter of rollers	М	35	47	47	52	62	90
	0	82	116	116	155	187	238.5
	P1	63	85	85	91	97	122
	P2	40	53	53	61	63	88
	Р3	89	102	102	110	112	137
	P4	61	74	74	82	84	109
	R	74	119	124	172	209	290
	S	14	18	18	23	23	27
	V	51	85	93	128	160	190
	W1	30	50	50	58	62	100
	W2	11.2	10	10	18.3	19.1	22
	α	15°	15°	15°	15°	18°	10°
	β	30°	30°	30°	40°	40°	50°
Piston area***	cm ²	19.6	38.5	38.5	63.6	78.5	176.7
Operating pressure min./max.	bar	70	80	80	70	80	75
max. clamping force/roller	daN	450	1000	1000	1500	2000	4500
Centering accuracy within the whole range	mm	0.02	0.04	0.04	0.05	0.06	0.06
Repeatability accuracy	mm	0.005	0.007	0.007	0.007	0.01	0.01
Max. roller surface speed	m/min	800	725	725	715	600	560
Weight approx.	kg	14	56	57	117	174	436

The Steady Rest can be modified to this clamping range if the coolant chip guard is not used

SR-A 6: Loading diameter only under 19° installation

^{***} Cylinder sizes different from standard available on request

Self-centering Steady Rests **Premium Line**

■ Ordering review ■ Accessories and wearing parts

SRA Steady Rest with stroke control Steady Rest open via proximity switch (without proximity switch)***									
Steady Rest size		2	3	3.1	4	5	6		
SRA-M manual lubrication	ld. No.	128163	128175	128193	127025	128025	128457		
SRA-Z central lubrication oil	ld. No.	128164	128176	128194	127024	128024	128456		
SRA-OLD central lubrication oil + air	ld. No.	128165	128177	128195	127026	128026	128458		
SRA-F central grease lubrication	ld. No.	on request							

SRA Steady Rest with stroke control via linear stroke control SCU-A, output 4–20 mA									
Steady Rest size		2	3	3.1	4	5	6		
SRA-M manual lubrication	ld. No.	on request	128178	128196	127031	128031	128467		
SRA-Z central lubrication oil	ld. No.	on request	128179	128197	127030	128030	128468		
SRA-OLD central lubrication oil + air	ld. No.	on request	128180	128198	127032	128032	128469		
SRA-F central grease lubrication	ld. No.	on request							

SRA Steady Rest with stroke control via linear stroke control SCU-V, output 1–10 V									
Steady Rest size		2	3	3.1	4	5	6		
SRA-M manual lubrication	ld. No.	on request	128181	128199	127034	128035	128471		
SRA-Z central lubrication oil	ld. No.	on request	128182	128200	127033	128034	128470		
SRA-OLD central lubrication oil + air	ld. No.	on request	128183	128201	127035	128036	128472		
SRA-F central grease lubrication	ld. No.	on request							

Type SRA

♦ denotes wearing parts, recommended stock items

Steady Rest size		2	3	3.1	4	5	6
Compact lubrication system for oil pressure lubrication Container 2.7 l, 220 V *,**		088707	088707	088707	088707	088707	088707
Compact lubrication system for oil + air lubrication Container 2.7 l, 220 V *,**		088708	088708	088708	088708	088708	088708
Eccenter fine adjustment compl. at lever arm (2 pieces per steady rest) manual/central lubrication		127237	127240	127240	128474	128584	128585
Inductive limit switch		087926	087926	087926	087926	087926	087926
Swarf guard coolant/air with wiper		128106	124024	124024	125797	125816	128442
Wiper for swarf guard coolant/air		128108	124026	124026	126904	126888	128444
Swarf guard 3-pieces	□	026116	026117	026117	-	-	-
Roller stripper 2-pieces for middle piece	() () () () () () () () () ()	200154	198950	198950	200151	200152	200153
Rollers, cylindrical design	•	016952	016951	016951	016953	018345	028971
Rollers spherical design	•	017658	018433	018433	018443	019545	129825
Rollers synthetic material	•	029451	023443	023443	023672	023650	on request
Roller stripper (2-pieces) for middle piece with roller synthetic material	€ 1° •	204211	204212	204212	204214	204216	-
Rollers carbide	•	129223	129225	129225	220918	222038	on request
Adjustment device 1 set = 3 pieces	9	-	200178	200178	200179	200179	200179

- When placing an order, please advise voltage
 On request 110 V available
 Stroke control open / closed on request

SLU-X® SLU-B

SLUA®-X SR® SLUA®-B SRA

KLU

Our additional program:

- Special Steady Rests
 Turret Steady Rests
 Crankshaft Steady Rests
 Grinding Steady Rests

